

VAASA WIND EXHANGE & SOLAR, MARCH 2018

icrogrids, Energy Storage and enewable integration

i Vaattovaara

newable energy

al installed capacity more than double by 2040

capacity additions 2014-2040

Wind and solar amount to 50% of total renewables in 2040

Source: McKinsey 2011, UNEP 2009, EIU 2012 ¹ Share of total power capacity ² Other include bioenergy, geothermal, CSP and marine

u 29, 2018 | Slide 2

ergy and grid transformation

sition from a centralized to a distributed grid

More local than centralized, consider also loads as a resource for the control

at is a Microgrid?

ern, localized, small-scale grids

brid or Islanded Microgrid

ess to power in remote locations, power quality plus lower cost and environmental impact

d connected Microgrid

resiliency, power quality, self consumption and lower ronmental impact

PCC: Point of Common Coupling, CHP: Combined Heat and Power

ver: Uninterrupted power supply

aging power fluctuations from renewables

Wind power variations

Inherent volatility of renewables can compromise grid stability

Grid stability requirements are traditionally fulfilled by diesel generation (base load)

Optimized microgrid solution maximizes ROI* and fuel savings

ROI: Return of Investment

crogrid

eration at the point of consumption and always available

ogrid tasks

- requency control
- oltage control
- alance demand and production o pro
- *ptimize production by forecasting loads nd renewable proddution*
- *void fossils or reduce consumption by ptimized us*

werStore[™] Energy storage & controller for microgrids

g and play" solution, easily configurable to adapt your unique needs

ate Control

ining temperature inside ntainer within an able operating limit at all

um Ion Batteries

y module, Racks, and y Management System Interface sy maintenance line replaceable -swappable

00

Store™ Conversion n Ilable dular d Forming ual Generator

Remote Monitoring

Comprehensive solution unattended sites to incre productivity.

- Key Performance Ind
- Real-time & historical trends
- Configurable data sar rate
- Support predictive, preventive and correct maintenance

Built-in PowerStor

Dedicated Microgrid plus system delivered preprogramed to meet the application needs

tomation

trol battery, generation assets and controllable loads to control and optimize the system

tomation for various needs

d to handle fast and slow variations

nding and synchronization

nless transition from grid connection anded mode

the challenges for robust power supply lation from national grid infrastructure gain control of your power needs on ' level

Grid Stabilization

Quality and reliability of electricity

Stabilizes an electricity network by rapidly absorbing power surges or by injecting power to make up for short-term decline, in order to maintain high quality

Load levelling

Enabling increased renewable utilizat

Acts as "Virtual Generator" and can form grid, handling up to 100% renewable en

mote operation & maintenance

ient asset management

d for efficiency and competence

- pically unmanned sites
- chnically demanding, need support
- oud based solutions
- ber security compliance

B Microgrids

bal References

and Utilities

iak Island, PowerStore/Wind/Hydro/Diesel \rightarrow 99% renewable

ut the Project	 Project name: Kodiak Island Location: Alaska, United States of America Customer: Kodiak Electric Association (KEA) Completion date: 2015 		
ition	The resulting Microgrid system consists of: – PowerStore Flywheel (2 MW/ 33 MWs) – Wind (6 x 1.5 MW) – Hydro (3 x 11 MW) – Diesel (1 x 17.6 MW, 1 x 9 MW, 1 x 3.6 MW, 1 x 0.76 MW)		
tomer Benefits	 Stabilizing - frequency regulation Provide frequency support for a new crane Help to manage the intermittencies from a 9 MW wind farm Reduced reliance on diesel generators 		

<u>Press Relea</u> Infographic <u>Video</u>

Two PowerStore Flywheels act in parallel in order to deliver optimal grid stabilization on Kodiak Island

mote Communities

ble Bar, PowerStore/PV/Diesel

ut the Project	 Project name: Marble Bar Location: Western Australia, Australia Customer: Horizon Power, Government of WA Completion date: 2010 	ľ	
ition	The resulting Microgrid system consists of: – PowerStore Flywheel (500 kW/ 16.5 MWs) – Microgrid Plus Control System – Solar PV (1 x 300 kW _p) – Diesel (4 x 320 kW)		
tomer Benefits	 Minimize diesel consumption - 405,000 liters of fuel saved annually Minimum environmental impact - 1,100 tons CO₂ avoided annually Reliable and stable power supply 60% of the day time electricity demand is generated by the PV plant 	Office of Energy	<u>Press Relea</u> <u>Video</u>
Marble bar a	nd Nullagine are the world's first high penetration, solar photovo	Itaic diesel power station	S

egration of renewables in a mining site

Grussa Mine, PV/Diesel/Storage

Project name DeGrussa Copper-Gold Mine Country

Western Australia, Australia

Customer

Juwi Renewable Energy

Completion date

2016

ABB solution

PV/diesel Microgrid with PowerStore grid-stabilizing technology and Microgrid Plus System

The resulting Microgrid system consists of:

- PowerStore Battery (2x2 MW/1.8 MWh)
- Microgrid Plus Control System
- Solar PV (10.6 MW_p)
- Diesel (22 MW)

Customer benefits

Expected diesel fuel saving: 5 million liters per year, a 20% reduction

Expected CO₂ reduction: 12,000 tons

About the project

The new hybrid solar facility is the largest integrated off-grid solar and battery storage plant in Australia

liable power in presence of a weak grid

Cross Logistics Center (Kenya), PV/diesel/Storage and grid

Project name

Red Cross Logistics Center

Location

Nairobi, Kenya

Customer

International Committee of the Red Cross

Completion date

2017

ABB solution

Supply, installation and commissioning supervision of a PowerStore-battery.

The resulting Microgrid system consists of:

- PowerStore Battery (150 kW/100kWh)
- Microgrid Plus Control System
- Solar PV (1 x 30 kW_p)
- Diesel (1 x 150 kW) ٰ

Customer benefits¹

Reliable and stable power supply despite outages and power quality issues.

Reduced fuel costs and carbon footprint

About the project

"Reliable power is essential for our staff to continue their life-saving work uninterrupted in the field. (...) the ABB microgrid solution is in line with the ICRC's goal to use environmentally friendly technologies. Solutions like this are proof that cooperation between the corporate and humanitarian sectors is not only possible, but imperative"

Peter Maurer, ICRC President

crogrid Market

bal market size, growth and forecast

icrogrid market is kpected to reach \$ 8.99 Billion by 022, at a CAGR of 2.45% ¹	Global Microgrid capacity is expected to grow from 1.4 GW in 2015 to 7.6 GW in 2024 ²	More than 400 individual projects are currently in operation or under development worldwide ³	Microgrid market to expand at an extraordinary 20.70 % CAGR owing to Development of Renewable Energy Technologies ⁴	Global market for energy storage in microgrids is expected to grow CAGR of more than 27% by 2019 ⁵

Global outlook of the Microgrid market by various analysts

iu 29, 2018 | Slide

1- Source - MARKETANDMARKET
 2, 3- Source - Navigant Research
 4- Source - Transparency market research
 5- Technavio

