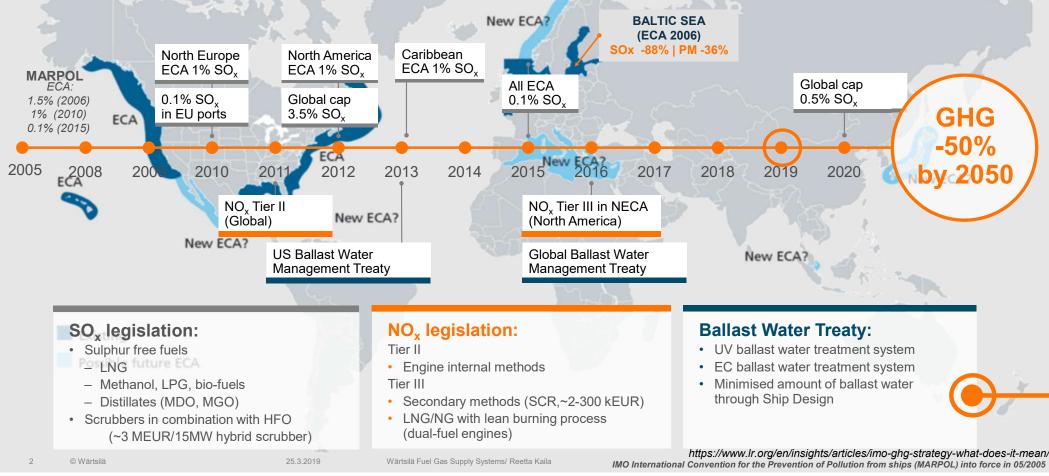
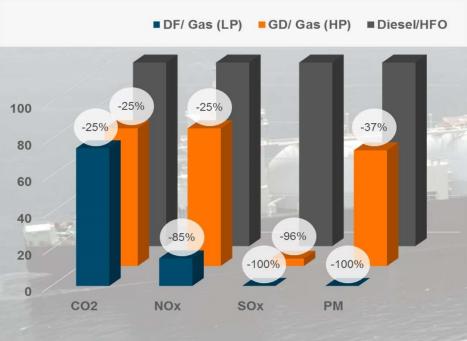
MARINE OPERATIONS WITH LNG AND **FUTURE FUELS**

21.3.2019, Vaasa Gas Exchange


Reetta Kaila | Sales Manager **Fuel Gas Supply Systems** Wärtsilä Gas Solutions

25.3.2019

RULES AND REGULATIONS

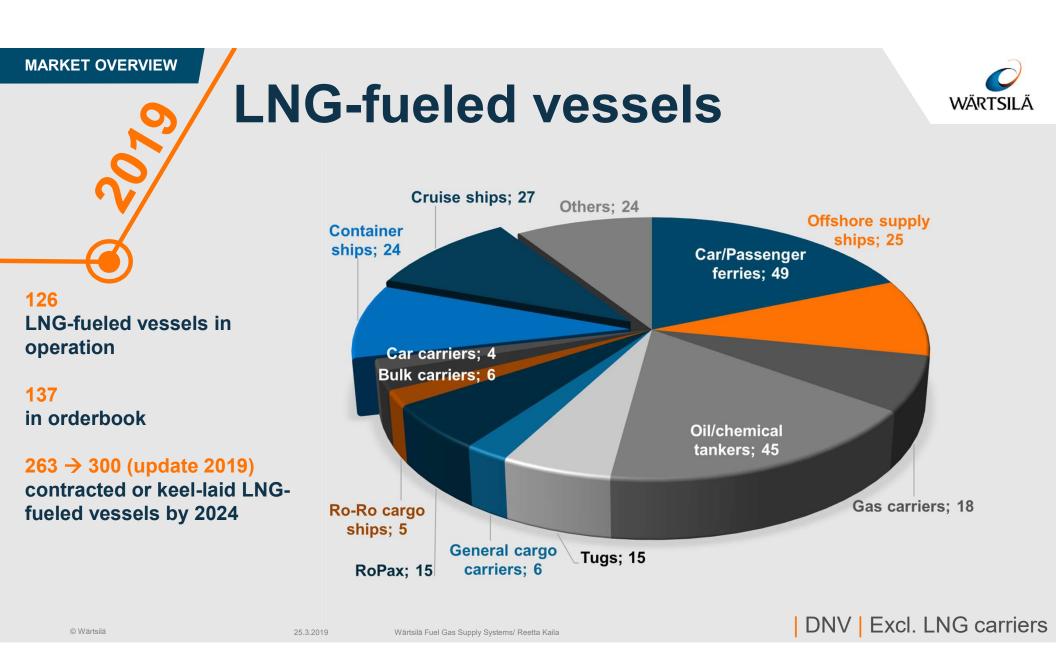


ENVIRONMENTAL LEGISLATION AND DEMANDS AS DRIVING FORCE

Reduced Emissions

Shifting from diesel to gas reduces
CO2 emissions by -18% (-25%)

Without SCRs & scrubbers


- TIER III compliant NOx emissions
- SOx & PM free emissions

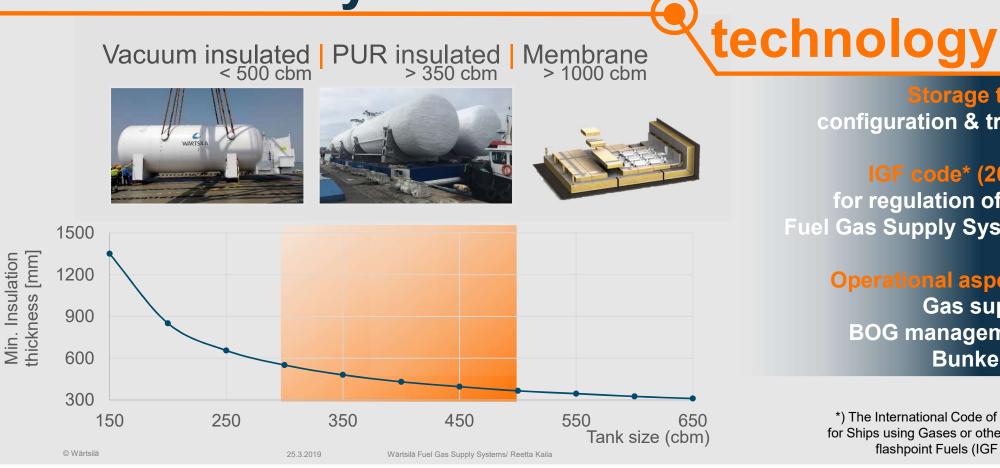
LNG as marine fuel

>2 100 Wärtsilä DF engines | >26 000 000 running hours

3 © Wärtsilä

25.3.2019

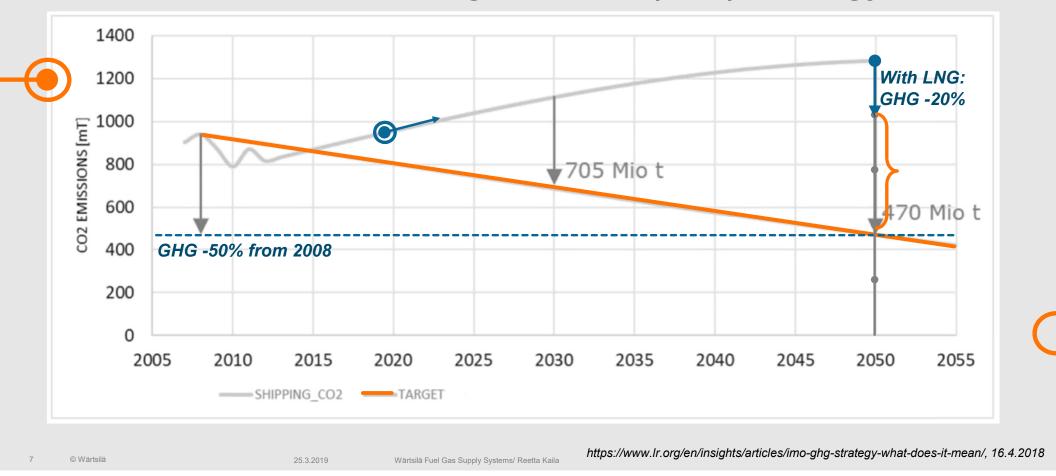
Bunkering methods and capacities – world wide (01/2018)Average bunkering capacities (m3/h) 600 479 500 400 250 300 200 Ship-to-ship – top 4 Shore-to-ship - top 10 100 34 Venetsia 100 m3/h Fujairah 100 m3/h 200 m3/h Klapeida 100 m3/h Port Arthur 0 Fourchon 500 m3/h Stockholm 300 m3/h Truck-Ship Ship-Ship Shore-Ship 500 m3/h Gijon Dubai 500 m3/h 500 m3/h Zeebrugge Truck-to-ship - top 4 Gothenburg 500 m3/h Port of Houston 100m3/h Lysekil 800 m3/h Port of Galveston 100m3/h Singapore 1000 m3/h Port of Beamount 100m3/h Rotterdam 1500 m3/h Port of Geismar 150m3/h Truck-to-Ship 30 | Ship-to-Ship 4 | Shore-to-Ship 12 | SGMF © Wärtsilä Wärtsilä Fuel Gas Supply Systems/ Reetta Kaila 25.3.2019


Standard systems with Mature

Storage tank configuration & trend

IGF code* (2016) for regulation of the **Fuel Gas Supply System**

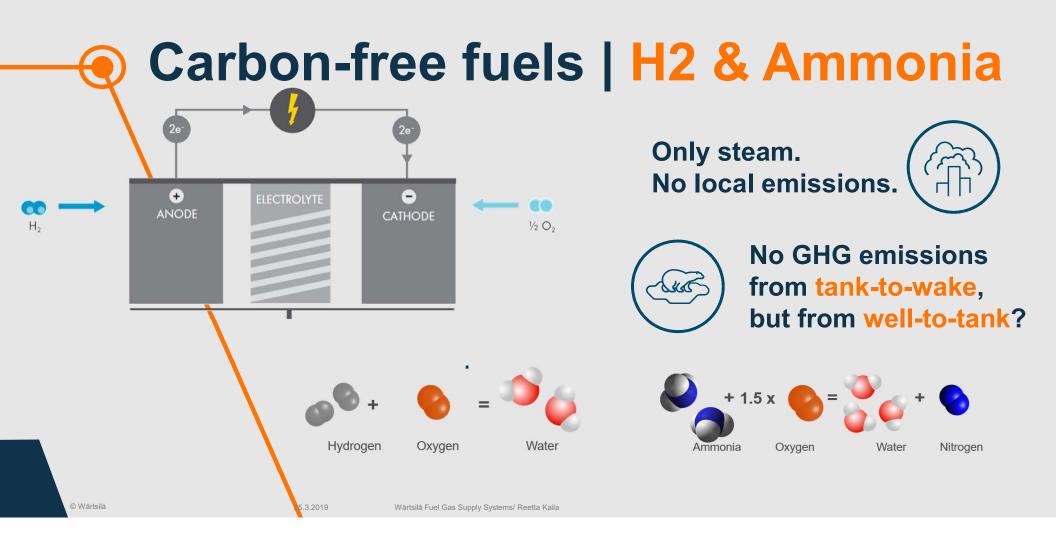
> **Operational aspects** Gas supply **BOG management** Bunkering


*) The International Code of Safety for Ships using Gases or other Lowflashpoint Fuels (IGF Code)

THE CHALLENGE & THE GAME CHANGER

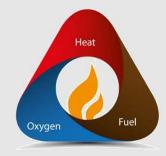
International Maritime Organisation (IMO) strategy 2050

REDUCED EMISSIONS WITH IMPROVED SHIPPING EFFICIENCY


WÄRTSILÄ TOTAL OFFERING

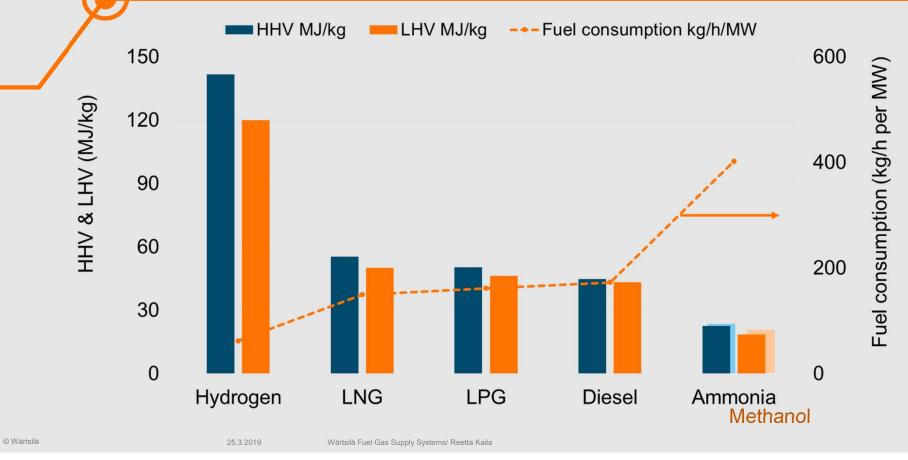
Reduced GHG emissions with improved shipping efficiency

Exhaust gas cleaning – local emissions Improved efficiency: propulsion | power generation | hull design Smart Marine Systems: navigation | smart operations | recovery of waste stream Alternative fuels: LNG | carbon-free fuels | carbon-neutral fuels

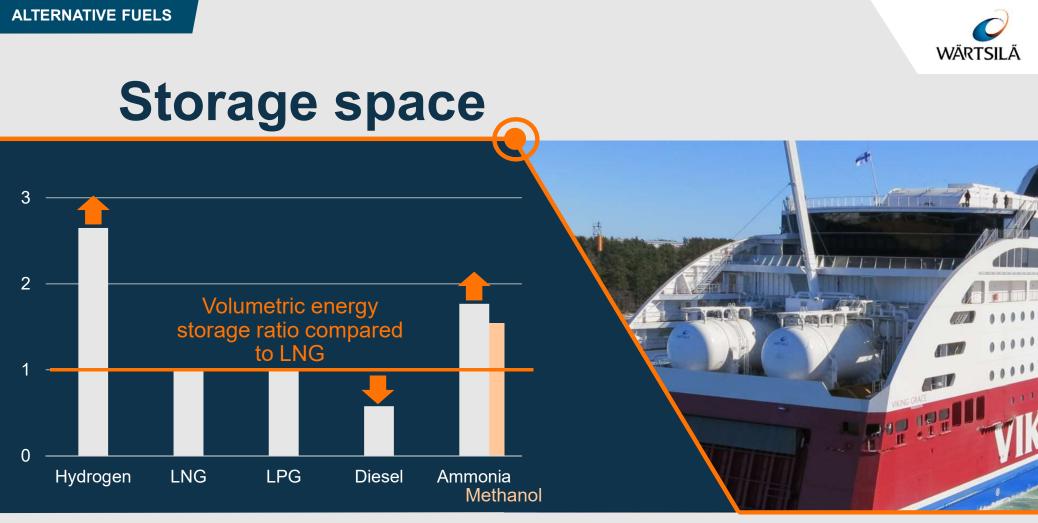

	PROPULSORS BALLAST WATER MANAGEMENT		IT COMPRESSORS	DYNAMIC POSITIONING	OIL SEPARATION	PROJECT MANAGEME	NT POWER ELECTRIC SYSTEMS	AUTOMATION	
	ENGINES & GENERAL	TING SETS	ENTERTAINMENT	EXHAUST GAS CLEANING	GAS SYSTEMS	PUMPS & VALVES	SAFETY & SECURITY	SEALS, BEARINGS & STERNS TUBES	SERVICES
		INTEGRA	TED SOLUTIONS	MARINE LIFECYCLE SOLUTIO	NS NAVIGATION		SONAR & SENSORS	WASTE & FRESH WATER MANAG	
8	© Wärtsilä			25.3.2019 Wärt	silä Fuel Gas Supply Systems/ R	Reetta Kaila			

LOW-FLASH POINT FUELS

Operational hazards


Cryogenic fuels | LNG/LH2 Compressed fuels | CNG/C-H2

Storage & handling	LNG	LH2	CNG	C-H2	Ammonia (NH3, liq)	
Temperature (°C)	-163	-253	25	25	25	
Pressure (bar a)	1	1	200250	300700	10	
Density (kg/m3)	420480	70,8	180215	2040	683 15-25%	
Flammability LFL-UFL	5-15%	4-75%	5-15%	4-75%		
Safety hazards	Cryogenic spillover, flashHeat ingress and pressure	0	Pressurised tank	 Pressurised tank Top-deck	 Hazardous chemical, with strong odor 	
Other	 Heavier than air at below - 83 C Bunkering well-known IGF code in place 	 Lighter than air - dissipates Max 600 m3/tank =1400 MWh/tank 	 Lighter than air – dissipates Limited tank volumes 	 Lighter than air - dissipates Max 152 kg/tank = 5 MWh/tank 	 Lighter than air – dissipates Bulk chemical for fertiliser industry Comparable to methanol 	
LNG: 2 x 600 m3 & 10 MV	V = 15d LH2: 2 x 600	m3 & 10 MW = 7d	C-H2: 10 x 152 kg & 10 MW = 3h			


25.3.2019

LHV and fuel consumption

11

Volumetric energy storage ratio of liquid fuels

© Wärtsilä

25.3.2019

CONCLUSIONS ON LOW-FLASH POINT FUELS

Conclusions

LNG operations

are well known today: also in varying conditions, abnormal situations

LH2

comes with high operational challenges and CAPEX

Ammonia

is a non-cryogenic fuel and can be bunkered without any remarkable boil-off losses throughout its pathway

type & efficiency of consumers | easy implementation | rules and regulations | drivers

25.3.2019

© Wärtsilä

DRIVER IN REDUCING EMISSIONS OF SHIPPING

Emissions in two categories

Category 1: Local emissions

CARBON-FREE H2, NH3

- Mainly NO_x, SO_x and particulates
- Health & environment related
- Short term impact
 - Local effect

Category 2: GHG emissions

CARBON-NEUTRAL **Biogas**, Power-to-X

- Mainly CO₂ and CH₄ (methane) Contribute to global warming/
- climate change Long term impact
- Global effect

LNG is a key enabler towards cleaner shipping

- Cutting Local and GHG Emissions
- Providing an infrastructure and the pathway for renewable fuels
- Blending with LBG and P2X fuels
- H2 & NH3 95% from fossil source
- LBG liquefied biogas
- P2X Power-to-X, synthetised methane

14 © Wärtsilä 25.3.2019

Towards Zero Emission Shipping by 2050

H2 by

Electrolysis

CO2 Capture LBG plants

Synthetic Methane (P2X)

Renewables in every tank by 2025

15 © Wärtsilä

Renewable

Energy

25.3.2019

Contacts: <u>reetta.</u>kaila@wartsila.com

25.3.201